Distinguishability of states and von Neumann entropy
نویسندگان
چکیده
منابع مشابه
Fractal Von Neumann Entropy
We consider the fractal von Neumann entropy associated with the fractal distribution function and we obtain for some universal classes h of fractons their entropies. We obtain also for each of these classes a fractal-deformed Heisenberg algebra. This one takes into account the braid group structure of these objects which live in two-dimensional multiply connected space. PACS numbers: 05.30.-d; ...
متن کاملVon Neumann entropy and majorization
We consider the properties of the Shannon entropy for two probability distributions which stand in the relationship of majorization. Then we give a generalization of a theorem due to Uhlmann, extending it to infinite dimensional Hilbert spaces. Finally we show that for any quantum channel Φ, one has S(Φ(ρ)) = S(ρ) for all quantum states ρ if and only if there exists an isometric operator V such...
متن کاملVon Neumann and Shannon-wehrl Entropy for Squeezed States and Cosmological Particle Production Von Neumann and Shannon-wehrl Entropy for Squeezed States and Cosmological Particle Production
We show that the eeective coarse graining of a two-mode squeezed density matrix, implicit in the Wehrl approaches to a semiclassical phase-space distribution, leads to results in agreement with previous diierent deenitions of entropy for the process of pair production from the vacuum. We also present, in this context, a possible interpretation of the entropy growth as an ampliication (due to th...
متن کاملPerturbation theory of von Neumann Entropy
In quantum information theory, von Neumann entropy plays an important role. The entropies can be obtained analytically only for a few states. In continuous variable system, even evaluating entropy numerically is not an easy task since the dimension is infinite. We develop the perturbation theory systematically for calculating von Neumann entropy of non-degenerate systems as well as degenerate s...
متن کاملThe von Neumann entropy of networks
We normalize the combinatorial Laplacian of a graph by the degree sum, look at its eigenvalues as a probability distribution and then study its Shannon entropy. Equivalently, we represent a graph with a quantum mechanical state and study its von Neumann entropy. At the graph-theoretic level, this quantity may be interpreted as a measure of regularity; it tends to be larger in relation to the nu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review A
سال: 2000
ISSN: 1050-2947,1094-1622
DOI: 10.1103/physreva.62.012301